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Abstract. An generic model for the lattice dynamics of coupled microlaser arrays is employed for the
lattice stability analysis. Nonlinear cross-cavity gain-coupling effects, characterizing active lattices, are in-
cluded via the gain dependence on carrier depletion and cross-cavity hole burning. Passive near neighbor
interactions (inter-cavity absorption and mirror reflection interference) are also included. The introduction
of lattice-orthogonal modes simplifies the derivation of the coupled rate equations. The interaction phase
among sites exhibits spontaneous long range “crystallization” into periodic Bloch states whereby the cavity
radiation envelopes behave as laser “macro-atoms”. The sign of the coupling coefficients as a function of
geometry determines in- vs. out-of-phase locking and has practical implications for array design. Emphasis
is placed on the stability analysis of Bloch states by including earlier omitted [1] effects of phase pertur-
bations. The importance of the linewidth factor ι is uncovered: unconditional stability results for ι ≤ 1,
otherwise a stability threshold exists for the coupling strength among sites. Choice of low ι gain material
permits phase stability with high coupling strength, beneficial in overcoming manufacturing variations
among array cavity parameters.

PACS. 42.55.Px Semiconductor lasers; laser diodes – 42.60.Fc Modulation, tuning, and mode locking –
42.60.Da Resonators, cavities, amplifiers, arrays, and rings

1 Introduction

Closely packed microlaser arrays, such as guided mode
VCSEL cavities and active defect superlattices, interact
through their evanescent fields, Figure 1. Fringe field in-
terference during stimulated emission introduces cavity
coupling, whereby photons confined in one cavity induce
emission in neighboring cavities. The non-linear complex-
gain dependence on carrier depletion and cross-cavity hole
burning introduces active photonic lattice behavior. The
photonic lattice resembles in certain aspects solid crystal
behavior, whereby the radiation envelopes play the role of
atomic wavefunctions.

The situation is distinctively different from well-known
photonic bandgap materials involving strong, passive in-
teractions through periodic dielectric interference [2,3].
Here weak but active evanescent field interference gen-
erates laterally propagating passbands out of localized,
cavity-confined modes [4]. In that respect, it is the op-
posite limit from the strongly coupled photonic bandgap
structures where interference among laterally propagat-
ing waves creates non-accessible frequency gaps inside a
global continuum. By the same token it differs from am-
plified photonic modes [5,6] inside cavity arrays with gain,
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Fig. 1. Schematic 2-D array configuration. When phase-
locked, the same phase difference applies between any two
neighbors in the x- and in the y-direction (in general
∆ϕx �= ∆ϕy). (b) Schematic interactions among near neigh-
bors, a active region radius, am mirror radius, b center sepa-
ration, w the 1/e2 mode waist. Solid black cicles mark passive
absorption.

where the wave dispersion is primarily determined by pas-
sive interactions.

Earlier analytic studies of coupled laser arrays [7,8] ne-
glected the carrier density evolution by using prescribed,
fixed complex gain profiles. This eliminates the active cav-
ity interactions, such as cross-cavity gain depletion (hole
burning) and stimulated inter-cavity emission, and allows
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Fig. 2. Mechanical analogues (a) coupled passive cavity lat-
tice: cavities behave as inertial masses coupled through weak
springs (b) coupled active cavity lattice: cavities behave as os-
cillators of given eigenfrequency (thick inner springs), mutually
coupled through weaker springs signifying lateral interactions
The active oscillators are nonlinear, since frequency (i.e. “stiff-
ness”) depends on radiation amplitude.

only linear cavity coupling. Neglecting carrier depletion
also eliminates the natural cavity oscillation frequency
from the lattice dynamics. Other studies [9,10] included
cross-cavity carrier depletion, but were limited to two cou-
pled cavities. Thus they could not describe collective ef-
fects and lattice behavior. The stability dependence on
coupling strength was noted [9,10], but the role of the the
linewidth factor ι in determining conditional vs. uncondi-
tional stability was not recognized.

The presence of a characteristic cavity oscillation fre-
quency Ω, due to interactions between the photon and
the carrier populations, also differentiates from passively
coupled cavities (coupled cavity waveguides [11,12]). One
can draw an analogy with mechanical oscillators of “hard”
inner spring constants Ω ∝ √

khard that are mutually cou-
pled by soft springs

√
ksoft ∝ √

Υ , as in Figure 2. The
coupling strength Υ imposes phase synchronization and
collective excitations; its smaller effect on the frequency
Ω′ ∼ Ω

√
1 + Υ determines the narrow bandwidth ∆Ω.

The passive coupled cavity limit is the analogue of in-
ertial masses coupled with a soft spring, where both the
oscillation frequency and the coherence are generated by
the spring action.

This work expands and revises earlier active lattice
theory [1] in two important respects: it generalizes the
lattice interactions and revises the stability of the collec-
tive lattice oscillations. Firstly, cross-cavity interactions
are completed by including cross-cavity feedback from re-
flection interference among near cavity mirrors, periodic
dielectric interference, and periodic passive absorption
that is spatially anti-correlated to the gain distribution.
The coupling coefficients are generalized for index-guided
eigenmode profiles, due to thermal lensing, in addition to
the gain-guided modes. More importantly, lattice stability
is revised by including phase perturbations among sites,
in addition to earlier addressed carrier density and radi-
ation intensity perturbation [1]. The rigorous treatment
uncovers the crucial importance of the linewidth factor ι:
lattice stability is unconditional for ι ≤ 1, and subject to
a coupling strength threshold otherwise.

The tight binding approximation for weak coupling is
used, constructing composite lattice eigenmodes via su-
perposition of phase-shifted single cavity eigenmodes [1].
The near-neighbor coupling coefficients for the lateral,
phase-dependent interactions are obtained, representing
cross-cavity gain depletion from stimulated emission, radi-
ation feedback via mirror reflection interference, and pas-
sive dielectric variation interference. While lateral mode
overlap stimulates additional radiation emission in adja-
cent cavities, the emitted radiation is also shared among
those cavities since the original eigenmodes are not lattice-
orthogonal. The net result is that, for weak overlapping,
the gain coupling coefficients can be negative, even for pos-
itive, Gaussian mode profiles. This effect, which was not
addressed earlier [1], is consistently included from the start
by mode renormalization into lattice-orthogonal modes.

The dynamic lattice evolution is reduced to integra-
tion of the coupled cavity rate equations under appropri-
ate boundary conditions (finite or periodic arrays). Start-
ing from random initial conditions, the system settles into
periodic steady states where the phase shift among neigh-
bors scales as an inverse lattice vector ∆Φ = K · b, Fig-
ure 1, manifesting phase crystallization into a standing
Bloch wave. For an array of N identical cavities of pe-
riod b, length L = Nb, any value ∆Φn = 2πnb/L satisfies
the phase locking d∆Φn/dt = 0 among sites. We find that
the lattice usually settles at steady-state values ∆Φn = 0,
π that maximize the collective gain ∝ Go cos∆Φn > 0,
where Go embodies the sum of gain, absorption and inter-
ference coefficients.

The present analytic results offer insight for practical
applications. Experiments [13–17] involving weakly cou-
pled laser arrays with cavity-confined modes have shown a
preference for spontaneous anti-phase locking ∆Φn = π. It
is usually accepted that in-phase modes suffer higher losses
between cavities, where absorption prevails, due to com-
paratively higher intensity there relative to anti-phased
profiles. Gain computation using natural cavity modes, di-
viding the per-period gain overlap by the total per-period
stored energy, indeed shows lower gain for in-phase modes,
due to a higher fraction of radiation energy stored between
cavities. Our lattice-orthogonal mode formalism automat-
ically accounts for the “weighting” of the gain and losses
by the per-period stored energy. The balance between gain
and losses is reflected in the overall coupling factor Go,
summing up gain, reflection and absorption. Competition
between cross-cavity stimulated emission and cross-cavity
photon sharing can turn the gain coupling and Go neg-
ative, even for positive (Gaussian) cavity mode profiles.
Negative collective coupling Go < 0 yields lower in-phase
gain, favoring anti-phasing. To achieve Go > 0 and in-
phase locking, preferable for many practical applications,
our analysis suggests two ways. One is to increase con-
structive inter-cavity reflection interference, by increasing
the Bragg mirror reflectivity between cavities. The other
is reducing the cavity separation b relative to the modal
waist w, since positive gain overlap and Go > 0 result
for w/b ∼ 1. Stability considerations become important
as cavities get closer: the coupling strength cannot exceed



S. Riyopoulos: Phase stability active photonic lattices 297

a small threshold unless we operate in the unconditional
stability regime ι ≤ 1. Most III-V semiconductors have
bulk material value ι � 2–3; however quantum dots and
dots in quantum wells have recently shown ι � 1.

For finite arrays we observe boundary layer formation
at steady state, where cavity densities and intensities vary
with the distance from the edges [21]. Drawing again the
analogy with mechanical springs, the nonlinear lattice re-
sponds to the boundary conditions by changing the edge
cavity “spring constants”, i.e. the intensity-dependent cav-
ity frequencies, in addition to phase selection that is the
only option in linear lattices.

The dynamics of collective phase oscillations around
a steady state lattice, subject to constant drive biases, is
further analyzed. The unconditional stability regime for
ι ≡ gi/gr yields a dispersion of stable, time decaying col-
lective oscillations. Local site excitation with a real fre-
quency bias leads to space-decaying lattice waves. These
coherent, low frequency coupled variations among the pho-
ton and carrier densities constitute a “photonic sound”
analogue for active lattices. For ι > 1 the stability is
conditional and depends on the coupling strength Υ . At
larger coupling strengths we observe transition to limit
cycles, tantamount to self-excitation of photonic sound
under constant in time biases. At even higher coupling
we observe transition to chaotic behavior, typical of non-
linear dissipative systems. An interesting aspect is that
instability follows not by increasing the external gradient
(drive voltages for the laser cavities) but by increasing the
system “cohesiveness” (cavity coupling strengths.)

2 Rate equations for coupled VCSEL cavities

In Figure 1 we assume that M×N identical cavities are ar-
ranged in the (x−y)-plane with axes along the z-direction
and thin circular active areas centered at the lattice vec-
tors Rij = ibx + jby with bx, by basis vectors. The com-
plex gain distribution reflects the periodic electron-hole
pair density N in the active regions

N (r) =
∑

i,j

Nij(t)χ(r − Rij) (1)

where Nij is the cross-section averaged density and χ(r)
its normalized profile, as shown in Figure 3a. We include
index-guiding effects allowing spatial variation in the real
part of the dielectric constant

εr(r) = εr
o +
∑

i,j

δεr(r − Rij) (2)

where the uniform background εo is the bound electron
response. The induced dielectric corrections are limited
within effective radius a (taken equal to the carrier density
and current radius), Figure 3b. The two dielectric terms
inside

δεr(r) = −ω2
p

ω2
χ(r) +

a2 − r2

W 2
(3)

Fig. 3. Profiles of (a) carrier density (gain), (b) real dielec-
tric constant, (c) passive absorption and (d) mirror reflectivity,
along a 1-D lattice cross-section.

give, respectively, the free carriers dielectric response (neg-
ative, anti-guiding) where ω2

p = 4πNthe
2/m∗ is the plasma

frequency with 1/m∗ = 1/m∗
e + 1/m∗

h, and the thermally
induced on-axis index peaking (guiding), which is taken
parabolic in radius and relatively shallow a/W � 1. The
overall effect is guiding for a2/W 2 > ω2

p/ω
2. The temper-

ature is assumed constant, neglecting transients in the di-
electric response. The passive absorption profile is defined
by the absorption coefficient α(r) ≡ ωεi(r)/vg where εi is
the imaginary part of the dielectric constant. In most prac-
tical cases, the spatial distribution of absorption is anti-
correlated with gain and index; it centers around halfway-
lattice points, Figure 3c,

εi(r) = εi
o + δεi

∑

i,j

χα(r − R†
ij) (4)

defined by R†
ij = (i± 1/2)bx + (j ± 1/2)by. Dielectric ef-

fects, dominated by carrier density and temperature, peak
inside cavities; absorption peaks between cavities, due to
subthreshold carrier densities there. This accounts for the
different spatial distributions of εr, εi

Finally, the spatial variation in the reflectivity among
cavity DBRs Ro and background material R1, shown in
Figure 3d, is given by

R(r) = Ro

∑

i,j

ψ(r − Rij) + R1

∑

i,j

[1 − ψ(r − Rij)] (5)

where Ro, R1 stand for combined roundtrip reflectivity
in the vertical z-direction, which may also incorporate
diffraction and scattering losses. Without loss of gen-
erality a cylindrically uniform step-function profile is
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assumed for both χ, ψ,χ(r) = 1, r ≤ a, ψ(r) = 1, r ≤ am

and zero otherwise, normalized so that
(1/πa2)

∫
dr2χ(r) = (1/πa2

m)
∫
dr2ψ(r) = 1.

For weakly coupled cavities, involving laterally con-
fined modes interacting through their fringe fields, the
radiation field is expressed as a linear superposition
of localized cavity modes (tight-binding approximation),
of slowly varying complex amplitudes Eij(t) and eigen-
mode envelopes Ump(r̄) centered around lattice vectors
r̄ = r − Rij

E =
∑

i,j

∑

m,p

Emp
ij (t)Ump(r − Rij)ei(kz−ωmpt). (6)

For the assumed parabolic index profile, (3), the trans-
verse mode envelopes are given by Gauss-Laguerre func-
tions Ump(

√
2r/w) with modal waist w =

√
Wc/ω. In

addition to the usual orthonormality among same cav-
ity eigenmodes

∫
d2rUmp∗(r)Unq(r) = δmnδpq it is conve-

nient to impose spatial orthonormality among same modal
profiles m, p around different lattice sites. While the U -
basis is not lattice-orthogonal, a new Û orthogonal basis
follows via the Gram-Schmidt algorithm (Appendix A),
so that

∫
d2rÛ∗(r − Rij)Û(r − Ri′j′) = δi,i′δj,j′ . (7)

Since eventually we will consider only next-neighbor inter-
actions we limit orthonormalization to Rij−Ri′j′ = ±bx,y

by defining (Appendix A)

Û(r) = U(r) − 1
2ND

∑

±x

∑

±y

Cx,yU(r ∓ bx,y) (8)

where ND is the dimensionality of the array and the next
neighbor projection coefficients Cx,y are given by

Cx,y =
∫ ∞

0

d2rU∗(r)U(r ∓ bx,y) = e−
b2x,y

2w2 . (9)

Comparison of fundamental Gaussian profiles with their
lattice-orthogonal counterparts is shown in Figure 4 for
various lattice period values b/w. To satisfy (7) the lattice-
orthogonal Û have negative tails for r ≥ b, thus overlap
products between sites are negative, Figure 5. This will
affect the sign of radiation coupling coefficients later on.
Orthonormality among the density/gain profiles χ follows
automatically by assuming that cavities do not “touch”,
bx,y > 2a, whence

∫
d2rχ∗(r − Rij)χ(r − Ri′j′ ) = 0. (10)

We assumed the same electric field polarization ê for all
cavities, aligned with x̂. The uniform medium dispersion
is ωmp = kmpc/

√
εo where kmp is defined by the cav-

ity resonance kmp = (2π + ψmp) /L, including the phase
correction ψmp from complex reflection. The sought after
photonic modulation frequency is near the natural cav-
ity oscillation frequency, (d/dt) ln E � Ω, usually much

Fig. 4. Cavity eigenmode profiles (dashed) and the resulting
lattice-orthogonal eigenmodes (solid) for given Gaussian waist
w and with decreasing cavity separation b; (a) b/w = 2, (b)
b/w = 1.5. Orthogonalized mode functions have opposite signs
at overlap regions.

Fig. 5. Origin of negative sign of coupling coefficients for pos-
itive (Gaussian) cavity eigenmodes. The lattice-orthogonalized
mode functions have opposite signs over the gain regions (light
shaded) yielding negative gain-coupling coefficients Υ, Λ, and
similar for mirror reflection interference. Same sign overlap
over half-lattice regions (heavy shaded) yields positive absorp-
tion coupling coefficients V , Π .
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smaller than the frequency separation among cavity modes
ωmp − ωm′p′ . Thus one can ignore resonant coupling be-
tween cross-modal beating ∆ωmp and lattice oscillations,
and pick a single mode mp; without loss of generality we
choose the fundamental m = 0, p = 0 and U ≡ Uoo.

Substituting (6) in the wave equation, factoring the
fast phase term eikz−iωt out, and keeping lowest order
terms in the time derivative dE/dt yields

∑

ij

Eij

[
∇2

⊥ − k2 +
ω2

c2
(εr

o + δεr(r − Rij))
]
Û(r − Rij)

+
∑

ij

Eij
ω2

c2
[
∆εr

ij(r) + i∆εi
ij(r)

]
Û(r − Rij)

−
∑

ij

Û(r − Rij)
2iω
c2

ε
∂Eij

∂t
=
∑

ij

4πω2

c2
Pij . (11)

The ijth site experiences the influence of all other sites
through the terms ∆εr

ij(r) ≡ ∑i′,j′ �=i,j δε
r(r − Ri′j′ ) and

∆εi
ij(r) ≡

∑
i′,j′ δε

i(r − R†
i′j′ ) given in (2–4). We now ap-

ply the index-guided cavity eigenmode definition to the
first line

[
∇2

⊥ − k2 +
ω2

c2
(εr

o + δεr(r))
]
Û(r) = 0. (12)

(Letting δεr = 0 yields the paraxial wave equation for
gain-guided diffraction limited modes used in [1]). Al-
though, strictly speaking, it is the original “unhatted”
modes U that exactly satisfy (12), the corrections from
the normalization Û are of second order in the coupling
parameters (Appendix A) and thus neglected. Hence the
slow envelope equation becomes

∑

ij

Û(r − Rij)
(
∂Eij

∂t
− i

ω

2
∆εr

ij(r)
εo

Eij

+
vg

2
∆αij(r)

εo
Eij

)
= −4πi

2εo
ω
∑

ij

Pij(r) (13)

where we defined the absorption coefficient
∆α ≡ ω∆εi/vg. The polarization P ∝ E on the right-
hand side is related to the induced dipole moment during
stimulated emission p = p · ê, where p = 〈e|er|h〉 signifies
transition between the electron 〈e| and hole |h〉 states.
The evolution of the complex electric field amplitude in
a given cavity is obtained from the integral projection
of (13) with the U(r− Rij) wavefunction, taking advan-
tage of the orthonormality (7), and using the microscopic

transition elements p(ω), yielding [1]

∂Eij

∂t
=

2πp2

εo�

ω(Γ − i∆ω)
∆ω2 + Γ 2

ζ

[

QijNijEij

+
∑

i′ �=i,j′ �=j

Λij;i′j′Ni′j′Eij + Υij;i′j′ (NijEi′j′ + Ni′j′Ei′j′ )

]

+ i
ω

2
δε̂

[

QijEij +
∑

i′ �=i,j′ �=j

Λij;i′j′Eij + 2Υij;i′j′Ei′j′

]

− vg

2
δα̂

[
∑

i′ �=i,j′ �=j

Πij;i′j′Eij + 2Vij;i′j′Ei′j′

]

. (14)

Above ∆ω is the frequency difference from resonance
�ωo = Ee − Eh and Γ the phenomenological linewidth
broadening. We also defined δε̂ ≡ δεr/εo and δα̂ ≡ δα/εo.
The evolution of the carrier density (i.e. population in-
version N = ρee − ρhh) in the ijth cavity is obtained in a
similar manner [1], via the integral projection of the global
carrier density equation with χ(r − Rij),

∂Nij

∂t
=

Jij

edw
− γNij −

(p
�

)2 Γ

∆ω2 + Γ 2

×


NijEijE∗
ij +

∑

i′ �=i,j′ �=j

Λij;i′j′NijEi′j′E∗
i′j′

+
∑

i′ �=i,j′ �=j

(
Υij;i′j′NijEi′j′E∗

ij + cc
)


 (15)

where the the step-function property χ2(r) = χ(r) for the
uniform carrier density profile in each cavity was used.
Three kinds of coefficients enter the above equations. The
transverse confinement factor

Qij =
∫ ∞

0

d2rÛ∗(r − Rij)χ(r − Rij)Û(r − Rij) (16)

yields the transverse radiation overlap with the gain
medium in an isolated cavity; the “longitudinal confine-
ment” factor ζ = (dw/L) has also been factored out. The
inter-cavity coupling strengths are given by the following
two coefficients

Λi′−i,j′−j =
∫ ∞

0

d2rÛ∗(r − Rij)χ(r − Ri′j′)Û(r − Rij)

(17)

Υi′−i,j′−j =
∫ ∞

0

d2rU∗(r − Rij)χ(r − Rij)U(r − Ri′j′).

(18)

The dielectric interference coefficients have also been ex-
pressed in terms of Υ,Λ as δε̂rΥi′−i,j′−j , by redefining the
effective δεr

δε̂r =
∫∞
0

d2rU∗(r−Rij)δε(r−Ri′j′)χ(r−Ri′j′ )U(r−Rij)∫∞
0

d2rU∗(r−Rij)χ(r−Ri′j′ )U(r−Rij)
.

(19)
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We assume that the absorption distribution peaks halfway
between cavities and is spatially anti-correlated with the
gain and radiation profiles. For uniform absorption profiles
χα = 1 of radius aα, centered around half-lattice points
R†

i′j′ = Ri′j′ −b/2, the overlap factors between radiation
and absorption are given by

Πi′−i,j′−j =
∫ ∞

0

d2rÛ∗(r − Rij)χα(r − R†
i′j′ )Û(r − Rij)

(20)

Vi′−i,j′−j =
∫ ∞

0

d2rÛ∗(r − Rij)χα(r − R†
ij)Û(r − Ri′j′ )

(21)

Π,V have a different functional dependence from Υ,Λ.
Due to periodicity the coupling coefficients depend

only on the separation distance ∆Ri−i′,j−j′ = Rij −
Ri′j′ among lattice sites, implying parallel translation
invariance Λij;i′j′ ≡ Λi′−i,j′−j , Υij;i′j′ ≡ Υi′−i,j′−j etc.
Thus, one may substitute Û∗(r − Rij)χ(r − Ri′j′ ) →
Û∗(r)χ(r−∆Ri′−i,j′−j) and Û∗(r − Rij)χα(r − R†

i′j′ ) →
Û∗(r−∆Ri′−i,j′−j)χα(r− b/2) for the coefficient compu-
tation. The Hermitian property is also satisfied, taking the
form Λ∗

i−i′,j−j′ = Λi′−i,j′−j etc.
The terms Λij;i′j′ and Υij;i′j′ represent distinctively

different interactions [1]. Specifically, the total induced po-
larization in each cavity is the vector sum of the response
to its own electric field plus its adjacent cavity, phase
shifted fields. The cross-polarization Υij;i′j′ mitigates the
coupling of the self-induced polarization in one site to the
fields of its neighbor sites and introduce the phase depen-
dence. The cross-gain Λij;i′j′ mitigates interactions where
the polarization induced by one site to its neighbors cou-
ples back into the gain of the original site, and is phase in-
dependent. Similar reasoning yields both phase dependent
and independent terms, Vij;i′j′ and Πij;i′j′ respectively,
from the passive absorption δα̂. The refraction coupling
strengths are also given by Λij;i′j′ and Υij;i′j′ from the
geometrical similarity of δε and the gain profiles.

We now need to introduce the boundary conditions
in the axial direction z from mirror reflections, which can
cause inter-cavity mirror feedback interference [8]. One ef-
fective reflection takes place every cavity roundtrip, and
the reflected field is given according to (5)

E† =
∑

i,j

E†
ijU(r − Rij)

= R(r)
∑

i,j

EijU(r− Rij). (22)

Diffraction and scattering losses may also be incorporated
inside R [18]. The phase shift during round-trip has been
absorbed into the definition of the resonant cavity wave-
length kz and the cavity frequency ωo. Taking the projec-

tion onto the ij mode profile yields

E†
ij/Eij ≡ R

= Ro

∑

i,j



Qm
ij +

∑

i′ �=i,j′ �=j

(
Λm

ij;i′j′ + 2Υm
ij;i′j′Ei′j′/Eij

)




+ R1

∑

i,j



(1 −Qm
ij ) −

∑

i′ �=i,j′ �=j

(
Λm

ij;i′j′ + 2Υm
ij;i′j′Ei′j′/Eij

)




(23)

The coefficients Qm, Λm, Υm are defined exactly as in (16,
17), except the superscript m reflects the mirror radius
value am that in general differs from the gain region
a. In order to distribute the round-trip losses over the
round trip time 2L/vg where vg

∼= c/
√
εo we set E†

ij =
exp[−µ(r)vgt]Eij and define

µ(r) ≡ − ln(E†
ij/Eij)
2L

=
µo

ij

2



1 −
∑

i′ �=i,j′ �=j

(
Λ†

ij;i′j′ + Υ †
ij;i′j′Ei′j′/Eij

)


 , (24)

with µo
ij ≡ − ln[RoQij + R1(1 − Qij)]2/2L the single

cavity reflection losses (power), allowing for non-zero re-
flectivity R1 outside the mirror. The terms, defined by
Λ†

ij;i′j′ = ξΛm
ij;i′j′Υ

†
ij;i′j′ = ξΥm

ij;i′j′ describe coupling
through reflection interference from nearby cavity mirrors.
Note that for given geometry the sign of coupling depends
on the difference between mirror and ambient reflectiv-
ity via ξ ≡ (1 − R1/R0)/2QijLµo. Thus negative overlap
Λm

ij;i′j′ < 0 can produce positive Λ†
ij;i′j′ > 0 and in-phase

(constructive) reflection coupling that reduces losses when
the ambient material reflectivity is higher than the mirror
R1 > Ro. Eventually the round trip mirror loss is equiva-
lent to the time derivative Eij∂R/∂t = −vgµ(r)Eij , added
to the rhs of the complex amplitude equation,

∂Eij

∂t
=

2πp2

εo�

ω(Γ − i∆ω)
∆ω2 + Γ 2

ζ

[

QijNijEij +
∑

i′ �=i,j′ �=j

Λij;i′j′Ni′j′Eij

+Υij;i′j′ (Nij + Ni′j′) Ei′j′

]

−vg
µ

2

[

Eij −
∑

i′ �=i,j′ �=j

Λ†
ij;i′j′Eij

+2Y †
ij;i′j′Ei′j′

]

− vg

2
δα̂

[
∑

i′±i,j′±j′
Πij,i′j′Eij +2Vij;i′j′Ei′j′

]

+i
ω

2
δε̂

[

QijEij+
∑

i′ �=i,j′ �=j

Λij;i′j′Eij +2Υij;i′j′Ei′j′

]

, (25)

where, for uniform lattice parameters, µij = µ. This is a
general set of equations describing active cavity coupling
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Fig. 6. Dependence of coupling coefficient
strength on lattice geometry. Contour plots
of (a) Υ , (b) Λ, (c) V and Π vs. cavity
radius-to-separation 2a/b and separation-to-
mode waist b/w. Contour values vary expo-
nentially as 10−X . Darks areas signify nega-
tive coupling values.

from cross-polarization gain, as well as passive coupling
from index variation, passive ambient absorption and re-
flection interference feedback.

Cross-current leakage among neighboring cavities, as
well as long-range thermal coupling are neglected, since
the characteristic times for carrier and heat diffusion
are much longer than the optical coupling time and the
1/Ω period.

3 Nearest neighbor coupled array model

For fast decay of the localized radiation envelope U(r) only
the nearest site interactions need be retained, with i′ =
i±1, j′ = j±1. All relevant coefficients are then reduced to
the values, Qij = Q, Λi,j;i±1,j = Λi,j;i,j±1 = Λ, Υi,j;i±1,j =
Υi,j;i,j±1 = Υ , Πi,j;i±1,j = Πi,j;i,j±1 = Π , Vi,j;i±1,j =
Vi,j;i,j±1 = V , given by the following geometrical overlap
factors

Q =
∫ ∞

0

d2rÛ∗(r)χ(r)Û (r), (26)

Υ =
∫ ∞

0

d2rÛ(r)χ(r)Û (r − b) (27)

Λ =
∫ ∞

0

d2rÛ2(r)χ(r − b) (28)

V =
∫ ∞

0

d2rÛ(r + b/2)χa(r)Û(r − b/2) (29)

Π =
∫ ∞

0

d2rÛ2(r − b/2)χa(r). (30)

The relevant profiles ψ(r) are used for the mirror coupling
terms denoted by Υ †, Λ†. Q, of order unity, is the eigen-
mode “confinement factor” within each cavity, and Υ , Λ,
Π , V � 1 are the small inter-cavity coupling strengths.
Analytic expressions for the coupling among fundamen-
tal mode profiles, using U00(r) =

√
2/πw2 exp(−r2/w2)

inside (27, 28), are given in Appendix A (generalized for
rectangular lattices with bx �= by). Defining the scale fac-
tor ε ∼ e−a2/w2 ∼ e−b2/w2

we have the scaling

Q ∼ 1 − ε2 � Π ∼ V ∼ ε1/2 � Υ ∼ ε � Λ ∼ ε2. (31)

Figure 6 shows contour plots of all coupling coefficients
vs. b/w and b/a. A stand-out feature is that for weakly
overlapping modes b/w > 1 the Υ coefficients become
negative (shaded areas), despite the positive (Gaussian)
eigenmode profiles U . The formal explanation lies in or-
thonormalization: the lattice-orthogonal Û , Figure 4, have
negative tails for r ≥ b, making the products Û(r)Û (r−b)
negative at the overlap regions χ(r) > 0, Figure 5. The
lattice-orthogonal coupling strengths (27, 28) are related
to the earlier obtained [1] positive Y and Λ that employ
unnormalized modes U instead of Û ; these relations fol-
low by substituting equation (8) as given in Appendix A.
While Υ can be negative, Λ, V and Π remain positive.

A less straightforward approach, that offers more in-
sight regarding the negative coupling values, is to retain
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the original (unhatted) eigenmodes in deriving the coupled
cavity rate equations. Then equation (14) for the complex
radiation amplitude assumes the form

∂Eij

∂t
+
∑

i′=i±1

∑

j′=j±1

Cij;i′j′
∂Ei′j′

∂t
=

2πp2

εo�

ω(Γ − i∆ω)
∆ω2 + Γ 2

ζ

×
[

QijNijEij +
∑

i′=i±1

∑

j′=j±1

Λij;i′j′Ni′j′Eij

+ Yij;i′j′ (NijEi′j′ + Ni′j′Ei′j′ )

]

+ · · · (32)

The right hand side contains the un-normalized cou-
pling coefficients Q,Λ,Y, . . . In addition, there is coupling
among the time derivatives on the left hand side, since
the mode profiles are not lattice orthogonal. Thus, as the
mode overlap stimulates gain on the rhs, the emitted ra-
diation must be shared among all modes on the left. For
large b/w the sharing “losses” into adjacent cavity modes
exceed the gain benefit from induced cross-gain. It can
be shown that diagonalizing the “tri-diagonal” left-hand
side of (32), and regrouping the rhs using the coefficient
relations (A.7), recovers equation (14) with the orthonor-
malized coefficients.

The coupling strengths, plotted in Figures 7a and 7b,
depend primarily on the ratio of cavity center separation
b to the 1/e2 mode waist w. For given b/w, there is a
weaker dependence on the cavity separation to diameter
ratio b/2a (where b/2a = 1 corresponds to touching active
areas and b/2w = 1 to touching mode waists). Note the
trivial limit Λ = Υ = Q for zero separation b = 0 when all
cavities coalesce into one.

Interestingly, the coupling goes to zero for uni-
form material properties, since equations (18, 17) re-
vert to the orthonormality conditions (7) when χα ≡ 1 or
ψ ≡ 1. Interactions “latch” on the variations χ(r) from
a uniform “floor” value χo. Thus zero coupling values
Λ = Υ = 0, (Λ† = Υ † = 0) result both for zero gain (mir-
ror) radius χ(r) = 0, and for infinite gain (mirror) radius
a, (am); in such cases Q = 1, (Qm = 1). Hence, individ-
ual cavities decouple gain-wise and reflection-wise when
they share either an infinitely extending uniform gain or
a common infinite mirror (but not both since that would
lead to a single infinite cavity). We also have Π,V = 0 for
a uniform absorption χα = 1, i.e., infinite aα.

The evolution of the complex Eij ≡ Eij exp[iϕij ] is
separated into amplitude and phase,

dEij

dt
=

1
2Eij

(
E∗

ij

∂Eij

∂t
+ cc

)
(33)

dϕij

dt
=

1
2iE2

ij

(
E∗

ij

∂Eij

∂t
− cc

)
. (34)

It is convenient at this point to introduce the rate equa-
tions in terms of the photon flux density F ≡ P/�ω and

Fig. 7. Linear plots of coupling coefficient strength along ver-
tical lines of given b/w = 1, 2, 3, 4, 5 in Figure 6. (a) Absolute
value of Υ vs. decreasing cavity separation b/2a. Dips mark
Υ = 0 with negative values to the left. (b) V vs. decreasing
cavity separation b/2a (positive). Coupling strength is more
sensitive to cavity separation relative to mode waist b/w, top
to bottom curves, than cavity separation relative to gain area
size, left to right.

the photon density Np = F/vg, where P = vgεoEE∗/8π
is the power and vg is the group velocity. Converting
the microscopic quantities in equations (33, 34) into phe-
nomenological macroscopic gain coefficients gr + igi where
gr = go ln [Nij/Ntr], gi = ιgr, N is the total (resonant plus
nonresonant) over equilibrium carrier density, and the pa-
rameters go and Ntr are given in terms of the material
properties and temperature T , yields [1], retaining only
the nearest interactions i′ = i± 1, j′ = j ± 1

dNij

dt
=

Jij

edw
− γNij −BN2

ij − gr ln N̂ijFij

− gr ln N̂ijΛ
∑

i′=i±1

∑

j′=j±1

Fi′j′ − gr ln N̂ijΥ

×
∑

i′=i±1

∑

j′=j±1

2
√

FijFi′j′ cos [ϕij − ϕi′j′ ] (35)
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dFij

dt
= vgζgr ln N̂ijFij − vgµFij

+
∑

i′=i±1

∑

j′=j±1

(
Λvgζgr ln N̂i′j′ + Λ†vgµ−Πvgδα̂

)
Fij

+ Υ
∑

i′=i±1

∑

j′=j±1

vgζĝ
[
ln N̂ij + ln N̂i′j′

]

×√FijFi′j′ cos [ϕij − ϕi′j′ + ϑ]

− V
∑

i′=i±1

∑

j′=j±1

2vgδα̂
√

FijFi′j′ cos [ϕij − ϕi′j′ ]

+ Υ † ∑

i′=i±1

∑

j′=j±1

2vgµ
√

FijFi′j′ cos [ϕij − ϕi′j′ ]

− Υ
∑

i′=i±1

∑

j′=j±1

2ωδε̂
√

FijFi′j′sin [ϕij − ϕi′j′ ] (36)

dϕij

dt
= vgζ

gi

2
ln N̂ij

+ Λ
∑

i′=i±1

∑

j′=j±1

(
vgζ

gi

2
ln N̂i′j′ + ω

δε̂

2

)

+ Υ
∑

i′=i±1

∑

j′=j±1

vgζ
ĝ

2

[
ln N̂ij + ln N̂i′j′

]

×
√

Fi′j′

Fij
sin [ϕij − ϕi′j′ + ϑ]

− V
∑

i′=i±1

∑

j′=j±1

2vg
δα̂

2

√
Fi′j′

Fij
sin [ϕij − ϕi′j′ ]

+ Υ † ∑

i′=i±1

∑

j′=j±1

2vg
µ

2

√
Fi′j′

Fij
sin [ϕij − ϕi′j′ ]

+ Υ
∑

i′=i±1

∑

j′=j±1

2ω
δε̂

2

√
Fi′j′

Fij
cos [ϕij − ϕi′j′ ] . (37)

Above we have defined N̂ij ≡ Nij/Ntr with Ntr the trans-
parency density. We have also combined the real and imag-
inary gain contributions using gr = ĝ cosϑ, gi = ĝsinϑ
with ĝ ≡√g2

r + g2
i , ϑ ≡ tan−1gi/gr = tan−1ι.

4 Relaxation to Bloch eigenstates

The collective array behavior is investigated via numeri-
cal integration of the coupled lattice equations (35–37).

Fig. 8. Spontaneous phase lock in a 2-D 8 × 8 periodic array
from uniformly distributed random initial conditions and for
constant bias current I � 3.13Ith (a). Phase difference among
adjacent cavities in the y-direction for (a) in-phase locking for
coupling strength Y = 0.006. (b) Out-of-phase locking for cou-
pling strength Y = −0.006. The inset in (a) shows the sponta-
neous phase fluctuations on expanded vertical scale.

Constant in time drive currents, equal for all cavi-
ties, Jij(r) = Joχ(r) are turned on at t = 0. Ran-
dom initial conditions are used for the carrier den-
sity, the radiation intensity and phase in each cavity. A
spontaneous relaxation to collective steady states usu-
ally occurs within a short period. Typical example is
shown in Figure 8. Collective modes, such as Figures 9a
and 9b, exhibit constant radiation intensity and den-
sity in each cavity, Fij = Fo, Nij = No, and a constant in
time, uniform in space phase difference among lattice sites
∆ϕi ≡ ϕi − ϕi−1 = ∆ϕo, manifesting spontaneous cavity
phase locking. The time lapsed to phase lock depends on
the coupling strength, and is shorter for higher Υ .

The structure of collective eigenstates is analytically
obtained from the zeros of equations (35, 36). Since
only phase differences enter the dynamic equations for
the density (35) and the intensity (36) what matters
is the phase difference evolution, obtained by subtract-
ing equations (37) among any two neighboring sites for
∆xϕ±

i,j ≡ ϕi,j − ϕi∓1,j and ∆yϕ±
i,j ≡ ϕi,j − ϕi,j∓1. Be-

cause of lattice periodicity ∆xϕ±
i,j and ∆yϕ±

i,j are related
through the Bloch condition thus it is sufficient to record
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∆yϕ−
i,j , given by

d∆ϕij

dt
= vgζ

gi

2
ln
(

Nij

Ni,j−1

)

+ Λ
∑

i′=i±1

∑

j′=j±1

vgζ
gi

2
ln
(

Ni′j′

Ni′,j′−1

)

+ Υ
∑

i′=i±1

∑

j′=j±1

vgζ
ĝ

2

{

ln
(
NijNi′j′

N2
tr

)

×
√

Fi′j′

Fij
sin[∆ϕ±

ij + ϑ]

− ln
(
Ni,j−1Ni′,j′−1

N2
tr

)√
Fi′j′−1

Fi,j−1
sin[∆ϕ±

i,j−1 + ϑ]

}

− V
∑

i′=i±1

∑

j′=j±1

2vg
δα̂

2

{√
Fi′j′

Fij
sin∆ϕ±

ij

−
√

Fi′j′−1

Fi,j−1
sin∆ϕ±

i,j−1

}

+ Υ † ∑

i′=i±1

∑

j′=j±1

2vg
µ

2

{√
Fi′j′

Fij
sin∆ϕ±

ij

−
√

Fi′j′−1

Fi,j−1
sin∆ϕ±

i,j−1

}

+ Υ
∑

i′=i±1

∑

j′=j±1

2ω
δε̂

2

{√
Fi′j′

Fij
cos∆ϕ±

ij

−
√

Fi′j′−1

Fi,j−1
cos∆ϕ±

i,j−1

}

. (38)

It is not the individual cavity phases ϕij , but their differ-
ences that “freeze” in time d∆ϕij/dt = 0. Hence, phase
“crystallization” among cavity radiation envelopes paral-
lels phase crystallization among atomic wavefunctions in
lattices.

Of the most general set of steady states, yielding a
zero right hand side in equations (35, 36, 38), we are in-
terested in the uniform solutions subset, with constant
density and amplitude over the array given respectively
by Nij = No and Fij = Fo. Inspection shows that any uni-
form phase difference between adjacent sites ∆

x
ϕij = ∆

x
ϕo,

∆
y
ϕij = ∆

y
ϕo yields such a steady-state. Periodic bound-

aries every M and N sites, and and the uniformity of ∆ϕ

among sites lead to ∆
x
ϕo = m(2π)/M = Kmn · bx and

∆
y
ϕo = n(2π)/N = Kmn · by, where Kmn ≡ (Km,Kn) =

(m2π/Mbx, n2π/Nby) is a wavevector of the inverse lat-
tice. A given steady-state will henceforth be labeled by
the corresponding Brillouin zone vector Kmn. The phase
at the ijth site is linear in lattice coordinates, ϕij =
i∆

x
ϕo + j∆

y
ϕo = (ibx + jby) ·Kmn = Kmn ·Rij (within an

arbitrary constant.) Substituting the values Eij = Eoe
iφij

(where Eo ∝ √
Fo) in the electric field expansion, and fac-

Fig. 9. Snapshot of the radiation field, superposition of all
cavity fields, (a.u) over a 9 × 9 periodic array at t = 40 ns.
(a) In-phase locked steady-state for positive coupling constant
G = 0.006. (b) Anti-phase locked steady-state for negative
coupling constant G = −0.006. Lattice separation is twice the
cavity mode waist b/w = 2, with bx = by = 3 (a.u).

toring out the common fast-phase dependence ei(kz−ωot)

yields the mn-eigenmode envelope over the array

Emn(r) =
∑

i,j

Eoe
iKmn·RijU(r− Rij). (39)

Bloch eigenstates thus emerge naturally as the lattice
steady-states from the dynamic lattice equations. They
are formally equivalent to stationary perturbation theory
results involving cavity mode superpositions with expan-
sion coefficients Cij(Kmn) = Eoe

iKmn·Rij

Similar general conclusions have been described be-
fore using a model with gain coupling only [1]. Here we
will discuss (a) the effects of the added mirror interfer-
ence and passive dielectric, as well as absorption coupling,
on the eigenmode structure (b) how the overall coupling
strength determines phase selection, particularly in- vs.
anti-phasing (c) the departures from Bloch states caused
by finite array boundaries.
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4.1 Eigenmode effects

While the steady-state phase does not depend ex-
plicitly on the cavity interaction details, the steady
state amplitudes and densities depend on both
∆ϕmn and the various interaction coupling strengths,
Fo = F (Kmn;Υ, V, . . . ), No = F (Kmn;Υ, V, . . . ). They
are analytically obtained from the zeros of the rhs of
equation (35, 36). Substituting ∆ϕmn, and observing
that the sinusoidal terms cancel out at steady-state due
to ∆ϕi,i+1 = −∆ϕi,i−1 etc., yields

0 =
Jij

edw
− γNo −BN2

o − g0 ln N̂oFo − 4gr ln N̂oΛFo

− 4Υgr ln N̂oFo(cos∆ϕm + cos∆ϕn) (40)

0 = vgζgr ln N̂oFo − vgµFo

+ 4vg

(
Λζgr ln N̂o −Πδα̂ + Λ†µ

)
Fo

+ 4vg

(
Υζgr ln N̂o − V δα̂ + Υ †µ

)

× Fo(cos∆
x
ϕm+cos∆

y
ϕn). (41)

It is obvious from (40, 41) that passive dielectric coupling
δε does not affect No and Fo. Dielectric coupling enters
in the individual cavity phase advance equation (37). At
steady-state it causes a systematic frequency shift for all
cavities

∆ωε =
ω

2
δε̂
[
4Λ + 4Υ (cos∆

x
ϕm + cos∆

y
ϕn)
]
, (42)

which can be absorbed from the start into the cav-
ity frequency, and does not affect ∆ϕ. The resulting
from (40, 41) steady-state amplitudes and densities val-
ues are

Nmn
o = Ntr exp

[
µ

ζgr
Ξ(Kmn)

]
(43)

Fmn
o = ζ

γ

µ

{
Jo

edwγ
− γ̃

γ
Ntr exp

[
µ

ζgr
Ξ(Kmn)

]}
(44)

where the coupling effect is embodied in the lattice factor
Ξmn ≡ Ξ(Kmn), defined as

Ξmn ≡
1 − 4Λ† − 4Υ †(cos∆

x
ϕm + cos∆

y
ϕn)

1 + 4(Λ−Πδα̂/µ) + 4(Υ−V δα̂/µ)(cos∆
x
ϕm+cos∆

y
ϕn)

� 1 − 4(Λ† + Λ−Πδα̂/µ)

− 4(Υ † + Υ − V δα̂/µ)(cos∆
x
ϕm + cos∆

y
ϕn). (45)

Thus mirror interference coupling Y † and passive intercav-
ity absorption V affect the mode structure to the same
order as gain coupling Υ . We have neglected quadratic
terms in the coupling constants, thus using ζgr ln N̂o � µ
at steady-state. The isolated cavity steady-state values
No = Ntr exp[µ/ζgr], Fo = ζ/µ [Jo/edw − γ̃No] are recov-
ered in the uncoupled limit Υ †, Λ†, Υ , Λ, V , Π = 0 when
Ξ → 1. The steady-state density (43) is also expressed as
Nmn

o = (No)Ξmn .

4.2 Phase selection

The stability analysis of Section 5 will show that for val-
ues gi/gr ≤ 1 half of the steady-state values (∆

x
ϕm, ∆

y
ϕn)

are stable against small perturbations. Yet, our numer-
ical simulations show that, starting from arbitrary ini-
tial conditions, the lattice settles to either in-phased
(∆

x,y
ϕ o = 0) or anti-phased (∆

x,y
ϕ o = π) array configura-

tion. To understand the in- vs. out-of-phase preference
we notice that, during the final approach towards steady-
state mod(∆ϕij , π) � 0, the sin∆ϕij � 0 terms are neg-
ligible and the radiation amplitude and phase equations
are simplified as

Fij

dt
= vgζgr ln N̂ijFij − vgµFij

+
∑

i′=i±1

∑

j′=j±1

2vgGij,i′j′
√

FijFi′j′ cos∆ϕij,i′j′

+
∑

i′=i±1

∑

j′=j±1

(
Λvgζgr ln N̂i′j′ + Λ†vgµ−Πvgδα̂

)
Fij

(46)

d∆ϕij

dt
= vgζ

gi

2
ln
(

Nij

Ni,j−1

)

+ Λ
∑

i′=i±1

∑

j′=j±1

vgζ
gi

2
ln
(

Ni′j′

Ni′,j′−1

)

+
∑

i′=i±1

∑

j′=j±1

vg2

{

Gij,i′j′

√
Fij

Fi′j′
sin∆ϕij,i′j′

−Gij−1,i′j′−1

√
Fij−1

Fi′j′−1
sin∆ϕij−1,i′j′−1

}

(47)

where the various phase-dependent coupling contributions
are combined inside the factor

Gij,i′j′ = Υζĝ
1
2

ln
(
N̂ijN̂i′j′

)
− V δα̂ + Υ †µ (48)

Given that near steady-state N̂ij � No+O(Υ ), F̂ij � Fo+
O(Υ ), the overall effect of the coupling interactions on the
growth rate is given, to first order in coupling strengths,
by

1
Fij

dFij

dt

∣
∣∣
∣
∣
cpl

� 8vgGo cos∆ϕo + O(Υ 2) (49)

where Go = Υζĝ ln N̂o−V δα̂+Υ †µ. Our numerical obser-
vations are consistent with gain maximization: the phase
selection is such that the overall coupling effects enhance
the growth rate (i.e. “gain”). Maximum Go cos∆ϕo im-
plies ∆ϕo = 0 for Go > 0 and ∆ϕo = π for Go < 0.
Thus it is the combined coupling strength from mirror
interference, absorption coupling and gain coupling that
determines phase via the Go sign. The real dielectric (i.e.
index) interference ∆ε does not enter Go and phase selec-
tion.
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Most of the usual cavity arrangements [13–17] corre-
spond to Go < 0 causing anti-phased arrays. That hap-
pens because, for site separation larger than the mode
waist b/w > 2 the gain and mirror coupling coefficients
are negative Υ, Υ † < 0, while inter-cavity absorption cou-
pling remains positive V > 0 over the entire parameter
range. The cases of an infinite extent shared mirror (zero
mirror interferences Υ † → 0−), or infinite extent shared
gain region (zero gain cross-coupling Υ → 0−) also fall
into that category. To achieve Go > 0 for an in-phase
array one must have Υµ + Υ †µ > V δα̂. One approach
is reducing passive absorption between cavities, making
δα < 0. Increasing the DBR reflectivity between cavities
R1−Ro > 0 also makes Υ † positive for Υ negative, accord-
ing to definition after (24). Closely packing the cavities
b/w < 2 so that Υ, Υ † turn positive, is also an alternative;
then, because of the scaling (31), the absorption must be
uniformly distributed, so that V → 0+.

Next figures show typical lattice simulation results, in
the unconditionally stable regime. Figures 8a and 8b show
the dynamical evolution of the phase difference ∆φy

ij for
9 × 9 arrays with periodic boundary conditions. The cav-
ity parameters are µ = 1347 cm−1, gr = 1117 cm−1,
γ = 2 × 109 s−1, B = 3 × 10−11 s−1cm3, dw = 30 nm
and current I = 3.13Ith = 6.09 mA over active ra-
dius a = 3 µm and a ratio gi/gr = 0.5. Random initial
conditions with subthreshold density are used. Sponta-
neous emission is always superimposed on the rate equa-
tions [19], via a numerical implementation of random
photon emissions. Figure 8a shows that spontaneous in-
phase locking with ∆

x
ϕo = ∆

y
ϕo = 0 occurs for coupling

strength Go = 0.006. Phase locking is not impeded by
the ever-present spontaneous phase noise, (magnified in-
sert Fig. 8a). The envelope of the electric field over the
array at t = 20 ns is shown in Figure 9a. Changing the
coupling strength sign to negative Go = −0.006 leads to
an anti-phased array steady-state ∆

x
ϕo = ∆

y
ϕo = π, with

the field envelope plotted in Figure 9b. The corresponding
dynamic phase evolution is shown in 8b. It appears that
steady-state phase selection according to maximum gain
configuration is of probabilistic nature; for random initial
conditions the odds for 0 or π phasing are overwhelming.
A rare occasion where ∆

y
ϕo �= ∆

x
ϕo with π-phasing in y

and 3π/4-phasing in x, is shown in Figure 10, for the same
parameters as Figure 9b.

4.3 Finite array boundaries

Boundaries in finite size arrays can cause deviations from
Bloch eigenstates due to edge effects and boundary layer
generation. Finite boundaries are implemented by remov-
ing the appropriate coupling terms at the edge sites.
Figures 11 show the final steady-state from simulations
of a 9 × 9 array. Nearly in-phase locking results for
Go = 0.006 > 0 and identical other parameters as before.
Here however the phase difference among sites is not uni-
form but varies in space: Figure 11a shows a linear varia-
tion of ∆

x
ϕi along x (same holds for ∆

y
ϕj along y.) Instead

Fig. 10. Snapshot of the radiation amplitude profile (a.u) over
a 9 × 9 periodic array array at t = 40 ns. Anti-phase locking
with different (x − y)-phase pitch ∆Φx = 3π/4 and ∆Φy = π,
for the same parameters as Figure 6b. (a) 3-D radiation field,
superposition of all cavity fields. (b) Contour plot of above.
Lattice separation is twice the cavity mode waist b/w = 2,
with bx = by = 3 (a.u).

of uniform (Bloch) phase difference ∆ϕx
i = 0 we have uni-

form gradient d∆
x
ϕ/dx = d∆

y
ϕ/dy equivalent to a constant

second derivative ∇2ϕ = const �= 0. Figure 11b shows
boundary layer formation: the peak cavity field Eij varies
near the boundaries instead of Eij = Eo everywhere. The
plot of the radiation field envelope is shown in Figure 11c.
The boundary layer in the cavity densities is shown in Fig-
ure 11d. Simulations with negative Go = −0.006 < 0 led
to (nearly) anti-phased steady-states with similar bound-
ary layers and linear phase gradients around ∆ϕ = π.

Boundary layers are a consequence of the coupling non-
linearity. In linearly-coupled arrays, boundary conditions
are enforced by phase selection alone. For example, a 1-D
N -size array settles into a standing Bloch wave of the form
Aj = Asinj∆ϕk, ∆ϕk = [kπ/(N + 1)] (k �= 0, N + 1); the
values j = 0, j = N +1 represent fictitious “outer sites” of
permanent zero “displacement” A0 = AN+1 = 0 so that
they exert no force on the end-sites j = 1, j = N . Nonlin-
ear coupled arrays posses the extra ability to adjust end-
cavity frequencies (i.e. non-linear spring constants) by ad-
justing steady-state intensity at boundary sites. It allows a
non-Bloch state of uniform phasing and edge-varying am-
plitude Aj = A(j) cos[j0] (in-phase) or Aj = A(j) cos[jπ]
(anti-phase). Incidentally, the phase difference for linear
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Fig. 11. Snapshot of the radiation profiles
(a.u) over a 8×8 finite array array at t = 40 ns,
for the same parameters as Figure 8a. Phase
difference (x-direction) among neighbor sites
over lattice, (b) distribution of peak field Eij

(a.u.) in each lattice cavity shows boundary
layer formation, (c) 3-D radiation field shows
in-phase locking, (d) carrier density Nij/Nth

in each cavity.

coupled arrays cannot be exactly zero or π, yielding a si-
nusoidal rather than a flat array intensity profile inside
the array.

5 Phase stability and lattice oscillations

Further understanding of the array behavior results by an-
alyzing the stability of small oscillations around the steady
state. Here we assume that a steady state ∆ϕij = ∆ϕo,
Eij = Eo, Nij = No has been reached and examine the
evolution of small perturbations about these values. Col-
lective modes over a periodic lattice must also be of the
Bloch wave form

δA = δAoe
λt
∑

i,j

eκ·Rij (50)

where δA reflects either density or radiation amplitude.
Note that equation (50) is the discretized version of the
continuous Bloch function δAo(x)eiκx where the lattice-
periodic envelope is sampled at the lattice sites δAo(x =
0) = δAo(x = bx) = · · · = δAo(x = jbx). Replacing
independent phase variations by a lattice-periodic phase
perturbation manifests the transition to collective behav-
ior with long range coherence (far from steady state, the
site phases ϕij are treated as independent variables, fol-
lowing equations (37, 38). The description resembles the
dynamic behavior of a periodic, spring-coupled mass sys-
tem, a model finding wide applications in lattice dynamics.
Due to the periodicity, linearization of (35, 37) about any
site leads to identical stability equations. The polar dia-
gram Figure 12 shows electric field perturbations both in
and out of phase (δE⊥, δE‖), relative to the steady-state
field “direction” at each site. Picking an arbitrary site as
reference, Eij ≡ Eo, ϕij = 0 the neighboring site per-
turbations are related by δEi±1 = δEo(cosκbx,±sinκbx)

Fig. 12. Polar plane representation of the lattice amplitude
and phase perturbations along adjacent sites Eo, E1, E2... (a)
sinusoidal changes in electric field strength only without chang-
ing the relative phase between lattice sites, (b) sinusoidal
changes in both electric field strength and the relative phase
between lattice sites.

(and similar for δEj±1). The site phase changes by
δϕ± ∼= ±sin−1(δE⊥/Eo) � ±(δEo/Eo)sinκbx. Since the
x-coordinate can be thought of as a continuously run-
ning site index i, we have ∆ϕi,i−1 � bx(dϕi/dx) (and
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similar along y). Hence, analytic continuity in the defi-
nition of the phase difference among sites requires that
δ(∆ϕ)x ∝ d(δϕi)/dx = δΦo cosκxbx where δΦo =
δEo/Eo = δFo/2Fo. Picking an arbitrary Rij = Ro, ex-
panding around equilibrium and use of (50) yields the fol-
lowing equation for perturbations about steady-state

d

dt




δNo

δFo

δΦo



=




DNN DNF DNΦ

DFN DFF DNΦ

DΦN DΦF DΦΦ








δNo

δFo

δΦo



=λ




δNo

δFo

δΦo



 .

(51)
The elements DXY ≡ ∂(Ẋ)/∂Y with X , Y being either
of N , E , ∆ϕ are found from the rhs of (35, 37) at steady-
state, (Appendix B). It is instructive to consider certain
limiting cases before a full diagonalization is attempted.

Consider first the limit where only in-phase variations
is allowed in the electric field, δF⊥ = δϕ = 0. While ampli-
tude and density vary sinusoidally over space (and time),
the phase difference among adjacent sites maintains its
equilibrium value, hence DNΦ = DFΦ = DΦΦ ≡ 0. Diag-
onalization of (51) in this limit factors out to one trivial
eigenvalue λ3 = 0 and two eigenvalues λ1,2 from the upper
2 × 2 submatrix determinant

λ2−(DNN +DFF )λ+(DNNDFF −DNFDFN) = 0. (52)

Letting Θ = λ1,2 yields the dispersion relation for collec-
tive modes over the cavity lattice,

Θ(κ′;K) = Γ (κ′;K) ± iΩ(κ′;K)

√

1 − Γ 2(κ′;K)
Ω2(κ′;K)

(53)

where Ω ≡ √DNF |DFN | −DFFDNN and Γ ≡ (DNN +
DFF )/2. The two dispersion branches form the propagat-
ing bands of an active photonic lattice. Using the steady
state values in the rhs of (53), the frequency and the decay
rates are respectively given by

Ω(κ;K) = Ω̂(K)

×
{

1 − vgµΓo

Ω2
o

2Go
cosKmb(1 − cosκxb) + (x → y)

Z(κ;K)

}1/2

,

(54)

Γ (κ;K) = −|Γo| − γs [Z(κ;K)− 1] − vgµ2Go

× [cosKmb(1 − cosκxb) + (x → y)] (55)

with Z(κ;K) = 1 + 2Λ cosκxb+ 4Y cosKmb+ (x → y). A
perturbation of wavenumber κ relative to the lattice phase
involves free-space wavenumbers κ′

± = K ± κ through lat-
tice period coupling, contained in cosKmb cosκxb terms.
The coupled cavity frequency scales as Ω̂ = Ωo

√
Z(κ;K)

where Ωo is the oscillation (relaxation) frequency for
an isolated cavity. The decay rate Γ is related to the
stimulated γs = goFo/No and the total non-stimulated
γ̃ = γ + 2BNo decay rates. In the Go = 0, Z = 1
uncoupled limit we recover the characteristic cavity fre-
quency and decay rates Ωo ≡ √Do

NF |Do
FN | −Do

FFDo
NN

and Γo ≡ (Do
NN + Do

FF )/2,

Ωo =
√

vgµ
grFo

No
=
{
γvgµ

NJ/No − γ̃/γ

ln(No/Ntr)

}1/2

(56)

Γo = −γ + γ̃

2
. (57)

For usual VCSEL parameters Γ is much smaller than Ω,
scaling as Γ/Ω � Γo/Ωo �√γ/vgζµ � 1, so one may set
the square root in (53) to unity.

Proceeding to the full stability treatment we include
out-of-phase variations in the field, allowing perturbation
in the phase difference among sites δΦ �= 0 and conse-
quently DNΦ, DFΦ, DΦΦ �= 0. Since the resulting charac-
teristic equation from the 3× 3 determinant (51) is cubic,
one root remains real: no additional oscillatory (i.e. com-
plex) branch is introduced and the qualitative behavior of
the system stays the same. The main impact is in the sta-
bility of the steady state, since the real root now assumes
a finite value, λ3 �= 0. Algebraic solution of the third order
characteristic equation yields the three roots

λ1,2 = 2

√
|P |
3

(
cos
(

2π
3

) C
3
± isin

(
2π
3

))
+

A2

3
(58)

λ3 = 2

√
|P |
3

C
3

+
A2

3
(59)

where A2 ≡ DNN + DFF + DΦΦ, C =
−sign(Q)

√
27|Q|2/4|P |3, and P,Q are given in terms of

the matrix elements DXY in Appendix B. For the usual
scaling Γ/ω � 1 we have A2 < 0 and P > 0 over the
entire operation region. The complex plane location of
the roots is then determined by the sign of Q, as depicted
schematically in Figures 13a and 13b for Q < 0 and
Q > 0 respectively. Hence, by inspection, the real root
stability λ3 < 0, or the complex root stability �λ1,2 < 0,
are sufficient for global stability for, respectively, Q < 0
and Q > 0

λ3 < 0 and Q < 0 (60)

�λ1,2 < 0 and Q > 0. (61)

More specifically, for low values of the coupling strengths,
corresponding to small size phase perturbation elements
DXΦ, we have Q < 0, corresponding to the shaded por-
tion of the parameter space contour plot Figure 14a. Here,
according to the root diagram 13a, the real root stability
condition λ3 < 0 is sufficient for global stability, because
�λ1,2 ≤ λ3 < 0. We know that, in the zero Φ-variation
limit equation (52), λ3 = 0, hence

2

√
|Po|
3

3
2

√
|Qo|2
|Po|3 +

DNN + DFF

3
= 0 (62)

Po, Qo being the zero Φ-variation limits of P,Q. Thus, in
order to keep λ3 < 0 the induced change δλ3 due to fi-
nite DXΦ terms must be negative. Expanding P,Q in (59)
around Po, Qo in the small quantities DXΦ relative to Ω2,
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Fig. 13. Roots of the cubic characteristic equation in the com-
plex plane (a) for Q > 0 the stability of the real root λ3 < 0
is sufficient for global stability (negative real parts for the two
conjugate roots λ1,2), (b) for Q > 0 the real parts of λ1,2 will
turn positive, regardless of λ3 < 0.

Fig. 14. Area (shaded) of negative Q < 0 in gi/gr − Υ pa-
rameter space. Unconditional root stability in this area. (b)
Total stability area (shaded) below and above Q = 0. Solid
line marks the transition Q = 0. Conditional stability extends
for Q > 0.

and substituting for DXΦ keeping leading contributions
up to order Υ, V ∼ ε, yields

δλ3 = 4Υvgµ

(
g2

i

g2
r

(1 − cosκb) − 1
)

(1 − cosκb) cosKb

(63)
where without loss of generality we let Kx,y = K,κx,y = κ,
and bx,y = b. Since at steady state Υ cosKb > 0 the stabil-
ity condition δλ3 < 0 for the most unstable perturbation
κb = π becomes,

g2
i

g2
r

− 1
2
< 0. (64)

Thus, for small values of the phase-perturbation effects,
expressed by the condition Q < 0, there is unconditional
stability regardless of coupling strength Υ , for gi < gr/

√
2.

At higher coupling strengths Q turns positive when
(Appendix B)

8Υ <
1
3

[
γ̃ + γR

vgµ
− 8(Υ † − α

µ
V )
]/(

1
3

+ 2
g2

i

g2
r

)
(65)

above the shaded area boundary in Figure 14a. Crossing
into the positive Q > 0 occurs at lower Υ with increas-
ing ratio gi/gr. The Υ value for Q sign reversal is finite
at gi = 0. The complex root topology flips to that of Fig-
ure 13b, hence in the high coupling strength area the roots
of the 3 × 3 matrix cannot be obtained by linear expan-
sions around the no-phase perturbation 2× 2 case, as was
done for Figure 13a. Since we now have λ3 < �λ1,2 the
sufficient stability condition reads

�λ1,2 = 2

√
|P |
3

1
2
sinh

[
sinh−1|C|

3

]
+

A2

3
< 0. (66)

This condition is not automatically satisfied with the right
choice for the steady-state phase Υ cosKb > 0. The sta-
bility region for Q > 0 is marked by the shaded area lo-
cated above the solid line Q = 0 in Figure 14b. Unstable
oscillations break out above the shaded region. As a gen-
eral remark, instability always involves the complex roots
crossing into �λ1,2 > 0, while the real root λ3 remains
stable over the entire parameter space. This is shown in
Figures 15a and 15b, plotting the real parts from (58, 59)
vs. gi/gr for various strengths Υ .

The entire stability region in the gi/gr, Υ space, ob-
tained by exact calculation of the roots (58, 59) is shown
by the shaded area in Figure 16a. The parameters held
fixed are γ = 2 × 109 s−1, vg = 1010 cm/s, µ = 80 cm−1,
gr = 1300 cm−1 ζ = 0.065 and I/Ith = 5. The shape of
Figure 16a is typical over a wide parameter range and the
stability rules can be summarized as follows. There is a
complex gain range |gi/gr| ≤ β characterized by uncondi-
tional lattice stability, regardless of the coupling strengths
Υ , G. Outside that range, the stability is conditional, for
coupling strengths below a threshold value Υ ≤ ΥS(gi/gr)
given by (65). The width β of the unconditional stabil-
ity region, and the stable area size in general, decreases
with increasing laser bias, as shown in Figure 16b for
I/Ith = 10. On the other hand, stability increases with
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Fig. 15. Real parts of the roots of the stability matrix vs. phase
perturbation strength gi/gr for various coupling strengths Υ ,
(a) complex pair �λ1,2, (b) real root �λ3 = λ3. Only the com-
plex pair enters Re > 0 for large phase perturbation strength.

reduced group velocity, as depicted in Figure 16c with
vg = 108 cm/s. The stability area is always symmetric in
±gi. Notably it is solely the absolute ratio of the linewidth
factor to the real gain |gi/gr| that defines the limit for un-
conditional lattice stability to perturbations, regardless of
the coupling strength value.

Earlier lattice stability analysis [1] has also attributed
the onset of instability to the complex roots crossing into
the positive half-plane. However the earlier 2 × 2 disper-
sion limit is strictly valid for Υ � 1, where Q < 0 and the
present analysis predicts stability. Phase perturbations
were also ignored in the stability analysis for two coupled

Fig. 16. Effects of various parameters on the stability regime. Same values as in Figure 15b, except (a) bias current reduced
from 10 to 5 Ith, (b) group velocity reduced from 1 × 109 to 1 × 108 cm/s, (c) intercavity absorption added with V = 2Υ .

cavities [10]. In general the 2 × 2 limit puts the stability
boundary near the Q = 0 curve shown in Figure 13. The
full 3 × 3 matrix roots are thus necessary to pinpoint the
stability boundaries, while previous results serve as qual-
itative estimates. Because earlier simulations covered the
large gi/gr � 4 regime they did not find the unconditional
stability range gi/gr ≤ β.

Our numerical simulations have so far confirmed the
validity of the present stability conclusions. Stable phase
locking in the unconditional stability regime occurs for
coupling strength values approaching unity, up to the
weak coupling approximation limit. Any externally ex-
cited lattice wave of real wavenumber κ′ is a stable per-
turbation of real frequency ω(κ′) that decays in time with
decay rate Γ (κ′). Stable locking is also achieved in the
conditional region |gi/gr| > β for small coupling strengths
Υ . (A second stability region predicted at high coupling
Υ ≥ ΥSS is not borne out by simulations, most likely be-
cause the linear analysis breaks down there.) The charac-
ter of the stable dispersion however changes in going from
the unconditional to the conditional stability region. Fig-
ure 17a shows contour plots of the lattice dispersion for
gi/gr < β using the exact 3 × 3 matrix eigenvalues (58)
around the Kxbx = Kyby = 0 steady-state. The oscilla-
tion frequency Ω(κxbx), plotted in Figure 17b, remains
sinusoidal at relatively high strengths.

Similar conclusions follow from the real part (decay
rate) Γ (κxbx), plotted in Figures 17c and 17d. In fact, in
the unconditional stability region the roots show the same
qualitative behavior as the 2 × 2 roots (54, 55) obtained
by neglecting phase perturbations. The lattice dispersion
becomes profoundly non-linear in the regime gi/gr > β,
as shown in Figure 18. Both the oscillation frequency
Ω(κxbx), Figures 18a and 18b, and the growth rate
Figures 18c and 18d, exhibit high unharmonic content,
although the coupling strengths Υ are the same as in
Figure 17. This underscores the paramount importance of
the phase-perturbation effects parameterized by the ratio
g2

i /g
2
r . Large phase-pushing factors determine the strength
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Fig. 17. Lattice wave dispersion
relation for small phase perturba-
tion factor gi/gr = 6/13, at steady-
state with Kb = Kyb = 0. (a)
Contour plots Ω/Ωo vs. κxbx, κyby

at coupling strength Υ = 0.010.
(b) Line plots Ω(kxb)/Ωo along the
line kyby = 0 for equidistant cou-
pling strengths between Υ = 0.002
and Υ = 0.010. (c) Contour plots
γ/Ωo vs. κxbx, κyby , at coupling
strength Υ = 0.010. (d) Line plots
γ(kxb)/Ωo along the line kyby = 0
for equidistant coupling strengths
between Υ = 0.002 and Υ = 0.010.
the dispersion is nearly sinusoidal
resembling the 2 × 2 roots.

Fig. 18. Lattice wave dispersion
relation for high phase perturba-
tion factor gi/gr = 2, at steady-
state with Kb = Kyb = 0. (a)
Contour plots Ω/Ωo vs. κxbx, κyby

at coupling strength Υ = 0.010.
(b) Line plots Ω(kxb)/Ωo along the
line kyby = 0 for equidistant cou-
pling strengths between Υ = 0.002
and Υ = 0.010. (c) Contour plots
γ/Ωo vs. κxbx, κyby , at coupling
strength Υ = 0.010. (d) Line plots
γ(kxb)/Ωo along the line kyby = 0
for equidistant coupling strengths
between Υ = 0.002 and Υ = 0.010.
The dispersion is clearly non-linear
even at low Υ .
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of nonlinear effects under given coupling strengths. The
most unstable perturbations Γ > 0 in Figure 18d corre-
spond to oscillation wavenumbers κb � ±π, thus κb = π
was employed for the stability boundaries in Figures 14
and 16.

The conditional stability regime shows intense non-
linear behavior above the stability threshold Υ > ΥS .
The values ∆ϕ̃o(t), Fo(t) exhibit transitions to stable
non-linear periodic orbits (limit cycles), and undergo
successive period-doublings leading eventually to spatio-
temporal chaotic behavior [19].

Complex oscillation frequencies of real wavenumber κ,
dispersion (53), apply to the time evolution of initial
value problems and superpositions of real wavenumber
modes. Space propagation in boundary value problems
with imposed, time-dependent, boundary conditions, is
also of interest. A real driving frequency leads to complex
wavenumbers κ → κ + iη and evanescent waves, where
the decay constant η(Ω) is found by solving equation (53)
for �Θ(κ + iη) = 0 under given Ω = �Θ(κ + iη). Propa-
gation of spatially decaying modes, excited by externally
driving selected sites in the array, has been described else-
where [20].

The so far stability discussion was based on the scal-
ing Ωo/Γ ∼ Ωo/γ �√vgµ/γ � 1 for most manufactured
VCSELs. For the opposite case ωo/γ � √

vgµ/γ � 1,
involving combinations of low group velocity and very
low cavity losses (large carrier decay rate γ is unwanted)
both roots of equation (58) remain real and negative, with
−Γ < 0, regardless of Υ . Pure damping of fluctuations and
unconditional stability is now extended over the entire pa-
rameter space.

6 Passively coupled cavity limit

Fringe-field coupling among “passive” cavities (no gain
medium) is finding applications for coupled-cavity waveg-
uides in photonic crystal structures. The presented ac-
tive coupling theory is reduced to the passive cavity limit
by discarding the carrier density equation (35), and by
dropping all gain terms gr,i = 0 from the field equa-
tions (36, 37). The reduced amplitude and phase equa-
tions are

dFij

dt
= −vgµFij −

∑

i′=i±1

∑

j′=j±1

(
Λ†vgµ + Π

vg

2
δα̂
)
Fij

−
∑

i′=i±1

∑

j′=j±1

(
V 2vgδα̂ + Υ †2vgµ

)

×√FijFi′j′ cos∆ϕ±
i,j

−
∑

i′=i±1

∑

j′=j±1

Υ2ωδε̂
√

FijFi′j′sin∆ϕ±
i,j (67)

d∆ϕij

dt
=
∑

i′=i±1

∑

j′=j±1

Υ2
ω

2
δε̂

{√
Fi′j′

Fij
cos∆ϕ±

ij

−
√

Fi′j′−1

Fi,j−1
cos∆ϕ±

i,j−1

}

−
∑

i′=i±1

∑

j′=j±1

(

V 2
vg

2
δα̂ + Υ †vg2

µ

2

)

×
{√

Fi′j′

Fij
sin∆ϕ±

ij −
√

Fi′j′−1

Fi,j−1
sin∆ϕ±

i,j−1

}

.

(68)

Here µ parameterizes intra-cavity losses (instead of mir-
ror losses), while, as before, ∆α inter-cavity absorption
and ∆ε dielectric coupling. There is no steady-state, since
the isolated cavity modes in (67) decay in time. Yet, lossy
coupled-cavity waves can propagate along the lattice pro-
vided their decay rate in time (space) is much smaller than
their frequency (wavelength). Assume for example that all
cavities have been initially pumped at constant amplitude
Fo and phase difference ∆ϕo, before the gain is turned
off. The dispersion for the subsequent decaying collective
oscillations follows from the stability analysis of perturba-
tions around the nominal steady-state. The characteristic
equation is given by the lower right 2×2 sub-determinant
of (51)

det
∣
∣
∣
∣
HFF − λ HFΦ

HΦH HΦΦ − λ

∣
∣
∣
∣ = 0 (69)

where the matrix elements HXY result from the corre-
sponding DXY , equation (51), by omitting gain terms.
The complex frequency, for real propagation constant κ, is

Θ ≡ −Γ + iΩ =
HFF + HΦΦ

2

+
i

2

√
4HFΦHΦH − (HFF −HΦΦ)2. (70)

The diagonal terms are pure real, yielding the decay rate
Γ < 0. For lattice oscillations (real Ω) the quantity under
the square root must be positive. For originally in- (out-)
of phase cavities Kxbx = Kxbx = 0, (π) it leads to the
condition (Appendix B)

ωδε̂

vgµ
>

1
4

+ Λ + (Π ± V )δα̂. (71)

According to (71) the dielectric coupling strength among
cavities must exceed the combined cavity decay and the
lossy-coupling terms. In fact the oscillation frequency is
entirely generated by the dielectric coupling, since the un-
coupled passive cavities do not oscillate. Hence the dis-
persion (70) is linear, independent of the amplitude Fo, as
opposed to (54–56). For practical applications the decay
rates must be much lower than the frequency ω, which
implies very low loss cavities.
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It is of practical interest to consider wave propagation
when the original “steady-state” is the vacuum Fo = 0. In
that limit the original complex amplitude equation (25),
with zero gain terms, is the propagation equation for
the lattice perturbation δEij ≡ Eij . Again, imposing the
Bloch condition Eij = Eo exp[iκ ·Rij ] and assuming near-
neighbor coupling with Ei±1 = Ej±1 = Eo exp[±iκ · b]
yields the 2-D version of the earlier introduced coupled-
cavity waveguide equation

dEo

dt
= −vgµEo − 4

(
Λ†vg

µ

2
+ Π

vg

2
δα̂
)
Eo

− 4
(
V 2vg

δα̂

2
+ Υ †2vg

µ

2
+ iΥ2ω

δε̂

2

)

× Eo

(
cosκxbx + cosκyby

)
. (72)

It yields earlier described [12] complex oscillation frequen-
cies Θ = Γ + iΩ, where

Γ = −vg

[
(1 + 4Λ)µ + 4Π

δα̂

2

+ 8
(
V
δα̂

2
+ Υ †µ

2

)
(cosκxbx + cosκyby)

]
(73)

Ω = 8Υω
δε̂

2
(cosκxbx + cosκyby). (74)

The real frequency part Ω is provided solely by the real
dielectric coupling. For practical applications requiring
Ω � Γ the dielectric coupling must exceed the combined
intra and inter cavity losses, Υ∆ε/Υ †µ, Υ∆ε/V ∆α � 1.
The same condition permits propagation of decaying lat-
tice waves (complex propagation constant κ = κo + iν) of
real frequency, Θ = Ω.

7 Conclusion

A most general model for weakly coupled microlaser
lattices, addressing both passive and active cross-cavity
interactions, has been introduced and analyzed. Spon-
taneous relaxation to periodic Bloch states for infinite
arrays, with boundary layers for finite arrays, was nu-
merically and analytically demonstrated. The observed
phase selection among adjacent lattice sites is consistent
with gain maximization through interactions. The exci-
tation and stability of lattice oscillations was analyzed.
For the weak coupling, near-neighbor interaction regime
under consideration, lateral interactions generate narrow
frequency propagating passbands out of localized (non-
propagating) cavity modes. Both absolute and conditional
stability regimes for the active lattice oscillations were
identified; the first depends on the imaginary part of the
gain, the second on the inter-cavity coupling strength. In
the conditional stability regime we observed periodic cy-
cles and finally chaotic spatio-temporal lattice oscillations
for increasing coupling strength Υ under constant in time
uniform in space bias. Increasing the common driving laser

bias between the top and bottom of the array actually sta-
bilizes lattice oscillations (provided single mode operation
is imposed on each cavity).

High values of coupling strength are desirable in prac-
tical applications to overcome random or systematic vari-
ations in the cold cavity parameters due to manufacturing
tolerances. One would then seek materials with ι < 1 to al-
low unconditional dynamic stability for large coupling Υ .
The ι value is a material parameter which also depends
on quantum confinement effects. Use of quantum dots has
already yielded ι < 1 in GaAs based structures.

Appendix A: Lattice-orthogonal basis
and coupling coefficients

Strictly speaking the original GL basis functions are not
lattice-orthogonal

∫ ∞

0

d2rU∗(r − Rij)U(r − Ri′j′) �= δi,i′δj,j′ .

An orthonormal basis U → Û is readily constructed
following the Gramm-Schmidt orthogonalization proce-
dure. Limiting interactions to nearest neighbors with
Ri′−i,j′−j = ±bx,y we obtain expressions (8, 9). For Gaus-
sian cavity eigenmodes and using dimensionless rectangu-
lar coordinates x̄ = x/w, ȳ = y/w, b̄ = b/w

C±x =
2
π

∫ ∞

∞
dȳ

∫ ∞

∞
dx̄e−2ȳ2

e−2[x̄2±2x̄ȳ+ b̄2
2 ]

=
2
π
e−

b̄2
2

∫ ∞

∞
dȳe−2ȳ2

∫ ∞

∞
dx̄e−2[x̄∓ b̄

2 ]2 = e−
b̄2
2 .

(A.1)

For weak coupling the cavity separation is at least three
times the mode waist b/w ≥ 3 and Cx,y is less than 10−2.
Terms of order C2, being equivalent to second neighbor in-
teraction strengths, are henceforth neglected and the nor-
malization constant for Û (equal to

√
1 − 3C2/2 + C4/2

for 1-D, etc.) is set to unity. First we examine the effect of
the normalization on the exact cavity eigenmode equation

[
∇2

⊥ − k2 +
ω2

c2
(εo + δεχ(r))

]
U(r) = 0. (A.2)

Applying stationary perturbation theory to (A.2), the
frequency correction introduced by the use of Û , equa-
tion (8), in place of U , is given by

δ

(
ω2

c2
εo

)
= 2

δω

ω

ω2

c2
εo = − 1

2ND

∑

±x

∑

±y

Cx,yεo

×
∫ ∞

0

d2rU∗(r)
ω2

c2
χ(r)U(r ∓ bx,y). (A.3)

The integral in the rhs is just the definition of
Cx,y, yielding a second order correction in frequency
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2δω/ω = −C2
x,y/2 which can be neglected. Next, the hat-

ted basis Û is used for the coupling coefficients definitions
Υ , Λ, equations (27) and (28), and assuming for simplicity
square lattice with Cx = Cy = C, yields

Υ±1 ≡ Υ =
∫ 2π

0

dθ

∫ ∞

0

dr rÛ(r)χ(r)Û (r ∓ b)

= 2π
∫ ∞

0

drr
{
U(r)χ(r)U(r ∓ b) − C

2ND

× [U(r∓ b)χ(r)U(r ∓ b)

+ U(r)χ(r)U(r) + U(r)χ(r)U(r ∓ 2b)

+ U(r ± b)χ(r)U(r ∓ b)
]
+ O(C2)

}
. (A.4)

Second order contributions from cavities two lattice sites
apart (i.e. U(r)U(r ∓ 2b) and U(r± b)U(r ∓ b)) are
dropped. The contribution ∝ C

∫
U2(r ∓ b)χ(r) = CΛ is

also second order. Thus, and employing similar procedure
for the rest overlap factors, yields

Υ = Y − 1
2ND

CQ Λ = Λ− ND

2ND
CY +

C2

4N2
D

Q

V = V − 2ND

2ND
CΠ Π = Π − 2ND

2ND
CΠ (A.5)

where

Q =
∫ 2π

0

dθ

∫ ∞

0

dr rU2(r)χ(r) (A.6)

is the cavity “transverse confinement” factor, of order
unity, and

Y =
∫ 2π

0

dθ

∫ ∞

0

dr rU(r)χ(r)U(r ∓ b) (A.7)

Λ =
∫ 2π

0

dθ

∫ ∞

0

dr rU2(r ∓ b)χ(r) (A.8)

V =
∫ 2π

0

dθ

∫ ∞

0

dr rU(r)χ(r ∓ b/2)U(r∓ b)

=
∫ 2π

0

dθ

∫ ∞

0

dr rU

(
r ± b

2

)
χ(r)U

(
r ∓ b

2

)
(A.9)

Π =
∫ 2π

0

dθ

∫ ∞

0

dr rU2(r ∓ b)χ
(
r ∓ b

2

)

=
∫ 2π

0

dθ

∫ ∞

0

dr rU2

(
r ∓ b

2

)
χ(r). (A.10)

The far rhs in (A.9–A.10) derives from a half-period ori-
gin shift by b/2. The mixing among mid-lattice centered

terms, i.e.

V±1 ≡ V = 2π
∫ ∞

0

dr r

{

U

(
r ± b

2

)
χ(r)U

(
r ∓ b

2

)

− C

2ND

[

U

(
r ± b

2

)
χ(r)U

(
r ± b

2

)

+ U

(
r ± 3

b
2

)
χ(r)U

(
r ∓ b

2

)

+ U

(
r ± b

2

)
χ(r)U

(
r∓ 3

b
2

)

+ U

(
r ± b

2

)
χ(r)U

(
r± b

2

)]

+ O(C2)

}

produces only second order corrections ∝ C
∫
U2(r ∓

b/2)χ(r) = CΠ (and similar for Π).
Using the fundamental mode profiles

U00(r) =
√

2/πw2 exp(−r2/w2), using (r − bx)2 =
(x− bx)2 + y2, (r− by)2 = (y − by)2 + x2 and converting
to x = ρ cosφ, y = ρsinφ, yields

Q =
4
w2

∫ a

0

dρρe−2ρ2/w2
= 1 − exp[−2a2/w2] (A.11)

Yx,y = 4e−b2x,y/w2 1
w2

∫ a

0

dρρe−2ρ2/w2Io

(
2bx,yρ/w

2
)
,

(A.12)

Λx,y = 4e−2b2x,y/w2 1
w2

∫ a

0

dρρe−2ρ2/w2Io

(
4bx,yρ/w

2
)
,

(A.13)

Vx,y = 4e−b2x,y/2w2 1
w2

∫ a

0

dρρe−2ρ2/w2
= Qe−b2x,y/2w2

(A.14)

Πx,y = 4e−b2x,y/2w2 1
w2

∫ a

0

dρρe−2ρ2/w2Io

(
2bx,yρ/w

2
)
.

(A.15)

We have generalized for rectangular lattices with bx �= by.
The un-normalized coupling strengths (A.12, A.15) are
positive. Among the orthonormalized coupling strengths
Λx,y, Vx,y and Πx,y are always positive.

Appendix B: Stability equations around fixed
points

Equations (35, 36) are expanded around the steady-state
values Fij = Fo, Nij = No, ∆ϕij = ∆ϕo. Due to pe-
riodicity an arbitrary (i, j) is chosen as reference; we
take i = j = 0 with near neighbors i′ = ±1, j′ = ±1.
The perturbations are themselves Bloch waves, mean-
ing that the next site perturbations are phase shifted
by κb relative to the reference site, δA0,±1 = δA±1,0 =
δAo exp [±iκb] where A stands for F or N . Reviving
cos∆ϕo = (exp[iKb] + cc)/2 and taking the variation in
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respect to δF, δN , using the notation DXY ≡ ∂(Ẋ)/∂Y
with X , Y being either of δN , δE yields

DNN = −γ − 2BNo − grFo

No
[(1 + 2Λx)

+ (2Υx cosKxb)(1 + 1) + (x → y)] (B.1)

DNF =−gr ln
(

No

Ntr

)[
1+2Λx cosκxb+2

1
2
(2Υx cosKxb)

× (1 + cosκxb) + (x → y)
]

(B.2)

DFN = vgζ
Fo

No

[
gr(1 + 2Λx cosκxb)

+ ĝ(2Υx cosKxb cosϑ) (1 + cosκxb) + (x → y)
]

(B.3)

DFF = −vgµ + vgζ ln
(

No

Ntr

)[
gr(1 + 2Λx)

+ ĝ2
1
2
(2Υx cosKxb cosϑ) (1+cosκxb)+(x → y)

]

− vgδα̂
[
2Πx + 2

1
2
(2Vx cosKxb)

× (1 + cosκxb) + (x → y)
]

+ vgµ
[
2Λ†

x + 2
1
2
(2Υ †

x cosKxb)

× (1 + cosκxb) + (x → y)
]

(B.4)

DΦN = vgζ
gi

2
1
No

[(1 − cosκxbx)

× (1 + 2Λx cosκxbx) + (x → y)]

+ vgζ
ĝ

2
1
No

[2Υx(1 + cosκxbx)

× sinϑ (cosKxb− cos(Kx − κx)bx) + (x → y)]
(B.5)

DΦF = vgζ
ĝ

2
ln N̂o

Fo
[2Υx(cosκxbx − 1)sinϑ

× (cosKxb− cos(Kx − κx)bx) + (x → y)]

+
ω

2
δε̂

Fo
Υ [2(cosκxbx − 1)

× (cosKxb− cos(Kx − κx)bx) + (x → y)] .
(B.6)

The identity 2 cosKxb + cos(Kx + κx)b + cos(Kx −
κx)b = 2 cosKxb (1 + cosκxb) was used1, where the
phase shift ±κb comes from δA±1. The neighbor
site summations also yielded

∑
± cos(±Kxbx + ϑ) =

2 cosKxbx cosϑ, etc. The 2(1/2) factor stems from
∂F

√
FoF±1 = (1/2)[

√
Fo/F±1δF±1 +

√
F±1/F0δF0],

where F±1/F0 = N±1/N0 = 1 from the uniformity of the
steady state. For the derivatives in respect to the out-
of-phase variations δϕ ≡ δF⊥/2Fo = δΦosinkxb with

1 In reference [1] the result 4Y cos ∆ϕo + 4Y cos[∆ϕo + κb]
ought to be corrected to 4Y cos ∆ϕo + 2Y cos[∆ϕo + κb] +
2Y cos[∆ϕo − κb].

δΦo ≡ δF/2Fo, we observe that analytic continuity
∆ϕi,i−1 = bxd(δϕi)/dx (and similar along y) requires
δ(∆ϕ)x = δΦo cosκxbx etc. Thus, expanding the per-
turbed values ∆̃ϕ±

x,y = ∆ϕo + δΦo cos(±κx,ybx,y) yields
the partial derivatives

DNΦ = ĝ2 ln N̂oFoΥ [−(1 + cosκxbx)
× sinKxbx cosϑ + (x → y)] (B.7)

DFΦ = vgζĝ2 ln N̂oFoΥ [−(1 + cosκxbx)sinKxbx cosϑ
+ (1 − cosκxbx) cosKxbx sinϑ + (x → y)] (B.8)

+ 2vg

(
µΥ † − δα̂V

)
Fo [−(1 + cosκxbx)

× sinKxbx + (x → y)]
+ 2ωδε̂FoΥ [(1 − cosκxbx) cosKxbx + (x → y)]

(B.9)

DΦΦ = vgζ
ĝ

2
2 ln N̂oΥ

× [−2(1 − cosκxbx) cosKxbx cosϑ + (x → y)]

+ 2
vg

2
(
µΥ † − δα̂V

)

× [−2(1 − cosκxbx) cosKxbx + (x → y)] . (B.10)

The steady-state condition (43) further simplifies (B.4)

DFF = −2vg

(
µΥ − δα̂V + µΥ †)

× [cosKxbx(1 − cosκxbx) + (x → y)] (B.11)

where we have neglected quadratic terms Υ 2 by taking
ζgr ln(No/Ntr) � µ. We have generalized for arbitrary
Kxbx �= Kyby and κxbx �= κyby. Notice that the stability
matrix is independent of the real dielectric variation ∆ε.

The zero gain limit gr,i = 0 yields the matrix elements
for passively coupled cavities

HFF = −vgµ− [2Πxvgδα̂ + 2Λ†
xvgµ

]

− [2Vxvgδα̂ + 2Υ †
xvgµ

]

× [cosKxb (1 + cosκxb) + (x → y)] (B.12)

HΦF =
vg

2Fo

(
µΥ † + δα̂V

)
[2(1 − cosκxbx)(sin(Kxb)

− sin[(Kx − κx)bx]) + (x → y)]

− ω

2
δε̂

Fo
Υ [2(1 − cosκxbx)(cos(Kxb)

− cos[(Kx − κx)bx]) + (x → y)] (B.13)

HFΦ = vg(µΥ † + δα̂V )
× Fo [(1 + cosκxbx)sinKxbx + (x → y)]
− ωδε̂FoΥ [2(1 − cosκxbx) cos(Kxb) + (x → y)]

(B.14)

HΦΦ = 2
vg

2
1
2
(
µΥ † + δα̂V

)

× [2(1 − cosκxbx) cosKxbx + (x → y)] . (B.15)

The matrix eigenvalues in (70) depend on the discrimi-
nant ∆ = 4HFΦHΦF − (HΦΦ −HFF )2. For perturbations
around 0- or π-phased steady states Kx,ybx,y = 0, π the
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expressions under the square root simplify to

HFΦHΦF =
1
2

(2ωδε̂Υ )2 (1 − cosκb)2

×
[
1 − cosκb− (µΥ † + δα̂V )vg

ωδε̂Υ
2sinκb

]

(B.16)

HΦΦ −HFF = −vg {µ(1 + 4Λ) + 4Πδα̂

+
[
4Υ †µ(1+cosκb) ± 4V δα̂

]
(

3
2

+
1
2

cosκb
)}

.

(B.17)

Substituting in ∆ > 0 and taking κb → π for the most
unstable perturbation yields (71)

In the uncoupled cavity limit, letting all coupling coef-
ficients Υ , V , Λ, Π = 0, all matrix elements vanish except
the upper 2 × 2 submatrix. Then the stability equation
follows from

det
∣∣
∣
∣
Do

NN − λ Do
NF

Do
FN Do

FF − λ

∣∣
∣
∣ = 0. (B.18)

It yields the characteristic cavity relaxation oscillation fre-
quency and damping rate given by Ω2

o = −(Do
FNDo

NF −
Do

NNDo
FF ), Γo = (Do

NN + Do
FF )/2, equations (56,

57). The next limit is to allow oscillations in the car-
rier density and radiation amplitude, without chang-
ing the relative phase among sites (Fig. 12a), i.e.
∂(Ṅ)/∂∆ϕ = ∂(Ḟ )/∂∆ϕ = ∂(∆̇ϕ)/∂∆ϕ = 0. Now the
3 × 3 stability matrix factors into the upper 2 × 2 de-
terminant times λ,

det

∣
∣∣
∣
∣
∣

DNN − λ DNF 0
DFN DFF − λ 0
DΦN DΦF 0 − λ

∣
∣∣
∣
∣
∣
=

(−λ)det
∣
∣∣
∣
DNN − λ DNF

DFN DFF − λ

∣
∣∣
∣ = 0 (B.19)

(even though DΦN = ∂(∆̇ϕ)/∂N , DΦF = ∂(∆̇ϕ)/∂F �=
0). The dispersion relation, given in (54, 55), involves mod-
ified oscillation frequency and decay rates that depend on
the coupling strengths and the perturbation wavenumber
κ. The third root is trivial λ3 = 0.

We now consider characteristic determinant for the full
3 × 3 stability matrix

det

∣
∣
∣
∣∣
∣

DNN − λ DNF εDNΦ

DFN DFF − λ εDFΦ

DΦN εDΦF εDΦΦ − λ

∣
∣
∣
∣∣
∣
= 0. (B.20)

The tag ε indicates small terms of leading order ∼ Υ ,
V � 1. The transformation

λ = z +
A2

3
(B.21)

where A2 = DNN + DFF + DΦΦ puts the characteristic
equation λ3 −A2λ

2 + A1λ−A0 = 0 into to the form

z3 + Pz + Q = 0 (B.22)

where, keeping only terms up to order ε, we have

P = Ω2 − 4
3
Γ 2 −DΦNDNΦ + DNNDΦΦ − 4

3
ΓDΦΦ

(B.23)

Q = Ω2

(
2
3
Γ +

1
3
DΦΦ

)
+

2
3
Γ (DNNDΦΦ −DΦNDNΦ)

−DNFDFΦDΦN + DFNDNFDΦΦ − 8
9
Γ 2DΦΦ − 16

27
Γ 3.

(B.24)

The definitions Ω ≡ √DNF |DFN | −DFFDNN and Γ ≡
(DNN + DFF )/2 from the 2 × 2 stability limit have been
used. Coefficient P is positive, P = |P | > 0, over the
usual VCSEL operation range Ω2 � Γ 2. The sign of Q
is important and determines the root location in complex
plane, Figure 13. Regrouping terms yields

P = Ω2 − 4
3
Γ 2 +

2
3
DΓ (B.25)

Q = B3 +
2
3
Ω2Γ +

4
9
DΓ 2 − 16

27
Γ 3 (B.26)

where

B3 ≡ 1
3
Ω2DΦΦ + DFNDNFDΦΦ −DNFDFΦDΦN

(B.27)

D ≡ 3
2
DΦΦ

(
DNN

Γ
− 4

3

)
= DΦΦ

DNN − 2DFF

DNN + DFF
(B.28)

and we focus on the stability around Kxbx = Kyby = 0, π
where DNΦ ∝ sinKx,ybx,y = 0. Substitution of the sta-
bility matrix elements inside (B.27) yields, keeping only
leading terms in coupling strength Υ

B3 � 4ΥvgµΩ
2

(
2
3

+
g2

i

g2
r

(1 − cosκb)
)

cosKb(1 − cosκb)

(B.29)
and for Q � B3 + Ω2 (2Γ + DΦΦ) /3

Q �−Ω2

[
1
3
(γ̃ + γR + 4Govgµ cosKb(1 − cosκb)

− 8Υ
grFo

No
cosKb)− 4Υvgµ

×
(

2
3

+
g2

i

g2
r

(1 − cosκb)
)

cosKb(1 − cosκb)
]

(B.30)

where for simplicity we let Kx,ybx,y = Kb and κx,ybx,y =
κb. Neglecting the term grF

2
o /No = ω2/µvg � 1 yields

the parameter space region for negative Q, equation (65).
Returning to the eigenvalues, the three roots of (B.22)

are given by

zj = 2

√

−P

3
cos(θ + j

2π
3

), j = 1, 2, 3 (B.31)

where θ = (1/3) cos−1 C with C ≡ √
27/4Q/

√−P 3.
In our parameter regime P > 0, C = isignQ|C|,
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|C| =
√

27|Q|2/4|P |3. Then, θ = π/2 +
i(1/3)sign(Q)sinh−1|C|, which, after substitution in-
side (B.31) and (B.21) yields

λ1,2 = 2

√
|P |
3

(
−signQ cos

(
2π
3

)
sinh

[
sinh−1|C|

3

]

± i sin
(

2π
3

)
cosh

[
sinh−1|C|

3

])
+

A2

3
(B.32)

λ3 = −signQ2

√
|P |
3

sinh
[
sinh−1|C|

3

]
+

A2

3
(B.33)

where

|C|2 =

(
Ω2Γ/2

)2

(Ω2/3)3

[B3/Ω2Γ + 2
3 + 4

9DΓ/Ω2 − 16
27Γ

2/Ω2
]2

[
1 − 4

3Γ
2/Ω2 + 2

3DΓ/Ω2
]3 .

(B.34)
Substituting the matrix elements inside A2 ≡ DNN +
DFF + DΦΦ = 2Γ + DΦΦ yields

A2 = − [γ̃ + γsZ(κ;K) + 4vg (µGo + µΥ )
× cosKb(1 − cosκb)] < 0 (B.35)

since at steady-state Go cosKb > 0. Hence, for
signQ = −1 or signQ = 1 determined from (65), we re-
spectively obtain the complex plane root arrangement in
Figures 13a and 13b.

To compare the full stability roots with the roots
of the phase-invariant 2 × 2 limit corresponding to
DXΦ = B = D = 0 we expand the roots inside the deter-
minant (B.20) as λi = λo

i + εδλi. For the third (real) root,
the 2 × 2 limit is zero,

λo
3 = 2

√
|Po|
3

sinh
[
1
3
|Co|
]

+
DNN + DFF

3
= 0, (B.36)

and the lowest order non-zero λ3 value for the full 3×3 case
equals the first order change δλ3 due to the DXΦ �= 0 ele-
ments. Collecting terms ∼ ε around λo

3 = 0 inside (B.20)
yields

δλ3 = DΦΦ + DΦN
DNFDFΦ −DFFDNΦ

Ω2
o + Γ 2

o

. (B.37)

Substituting the expressions for the matrix elements and
neglecting terms Γ 2

o /Ω
2
o gives (63).

In the small phase perturbation regime the roots
are further simplified by the substitution, from (B.36)
2
√

Po/3sinh [|Co|/3] = (DNN + DFF )/3 ≡ Γo/3 in-
side (B.32, B.33) whence

λ1,2 = Γo +
(

1
2

√
PoB

3

Ω3
o

+
1
3
DΦΦ

)
∓ i
√

Po

√

1 +
3
2
B3

Ω3
o

(B.38)

λ3 =
√

Po
B3

Ω3
o

+
DΦΦ

3
. (B.39)

The zero phase-variation limit B = 0, DΦΦ = 0 of the
above recovers the expressions for the 2×2 stability limit.

When the phase-perturbation effects become signifi-
cant as B3 increases, the 3 × 3 roots cannot be expressed
as perturbations around the 2 × 2 roots; in particular λ3

cannot be expressed as δλ3 of the trivial root. The tran-
sition Q ≥ 0 causes essential changes in the complex root
location from Figures 13a to 13b. Now it is the complex
roots that tend to become unstable and cross the real axis.
This will happen if

�λ1,2 = 2

√
|P |
3

1
2
sinh

[
sinh−1|C|

3

]
+

A2

3
> 0. (B.40)

The stability boundary from (66) cannot be put in a
simple expression and is plotted graphically using formu-
las (B.32) in Figures 14 and 15.
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